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Abstract 

Operational risk models, such as the loss distribution approach, frequently use past internal 
losses to forecast operational loss exposure. However, the ability of past losses to predict 
exposure, particularly tail exposure, has not been thoroughly examined in the literature. In this 
paper, we test whether simple metrics derived from past loss experience are predictive of future 
tail operational loss exposure using quantile regression. We find evidence that past losses are 
predictive of future exposure, particularly metrics related to loss frequency. 
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1 – Introduction 

Large, internationally active US bank holding companies (BHCs) are required to calculate their 
operational risk capital according to the Advanced Measurement Approach (AMA), which relies 
on banks’ internal models to estimate exposure at the 99.9 confidence level.4 Similarly, large US 
BHCs are required to estimate operational losses under stressed conditions for the annual 
Comprehensive Capital Analysis and Review (CCAR) required by the Federal Reserve.5 To 
estimate exposure for both exercises, US BHCs frequently rely on the Loss Distribution Approach 
(LDA), an actuarial modeling framework within which past loss frequencies and severities are 
used to forecast exposure. A critical assumption of such a framework is that exposure in the past 
is the same as exposure in the future. In this paper, we test whether the use of past losses really 
improves the forecasting of exposure. In particular, we use quantile regression to assess whether 
past losses add value in predicting future tail losses.  

The literature includes various papers discussing the factors that predict operational loss 
exposure (e.g., Chernobai et al. 2011, Cope et al. 2012, Wang and Hsu 2013). However, not much 
attention has been devoted to the fundamental assumption underlying LDA models: do past 
losses help predict future exposure, particularly tail exposure?  

To assess whether past operational losses add value in predicting operational risk exposure, we 
performed quantile regressions where the high quantiles of the industry distribution of annual 
operational losses are forecasted using metrics calculated from past losses and other financial 
variables. We used a variety of alternative explanatory variables and specifications, including 
regressions with firm and time fixed effects, and found that loss metrics help forecast tail 
operational loss exposure. In particular, we found that average loss frequency above $100k is a 
statistically significant predictor of future operational losses all the way to the 99th quantile of 
the operational loss distribution. This relation is robust to a variety of specifications. Other loss 
metrics, such as average total losses, are also predictive of future tail exposure but stop being 
statistically significant at lower quantiles. Therefore, our results show that past losses are useful 
in predicting operational loss tail exposure. 

Our results also show that firm size, measured through gross income or total assets, is predictive 
of tail loss exposure. As banks grow, their tail operational losses also grow.  

The remainder of this paper is organized as follows: Section 2 discusses the model used for the 
conditional quantiles of the operational loss distribution; Section 3 describes the data used; 

                                                           
4 Code of Federal Regulations, Title 12, Federal Reserve System, Part 217, Subpart E. 
5 Board of Governors of the Federal Reserve System, 2014, “Comprehensive Capital Analysis and Review 2015 
Summary Instructions and Guidance.” 
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Section 4 describes the quantile regression methodology, presents the main empirical results, 
and provides multiple robustness checks; finally, Section 5 concludes. 

2 – Model for Conditional Quantiles of the Operational Loss Distribution 

Historical operational losses are frequently used to estimate operational loss exposure. The logic 
of such an approach is that past operational losses proxy for the risk profile and risk management 
of firms and, thus, that if such risk profile and risk management remain stable, the loss profile in 
the future should be similar to the loss profile in the past. The goal of this study is to assess 
whether past operational losses do help predict operational loss exposure, particularly tail 
exposure. To study how the tail of the operational loss distribution behaves, we assume the 
following specification for the conditional quantiles of the operational loss distribution:  

𝑂𝑂𝑂𝑂𝑖𝑖,𝑡𝑡
𝑞𝑞 = 𝛼𝛼𝑞𝑞 + 𝛽𝛽𝑞𝑞𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝑖𝑖,𝑡𝑡−1 + 𝛾𝛾𝑞𝑞𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝑖𝑖,𝑡𝑡−1 

where OLi,t are the annual operational losses of bank i in year t, LossMetricsi,t-1 are loss metrics 
from bank i at year t-1, and GrossIncomei,t-1 is the three year rolling average of gross income for 
bank i ending at year t-1.  

A variety of loss metrics are considered in this paper, including average total annual losses, the 
standard deviation of total quarterly losses, and the average annual loss frequency above certain 
thresholds (such as $100k and $1MM). Average total losses are an obvious loss metric to consider 
because they are the natural estimate of the first moment of the annual operational loss 
distribution. Similarly, the standard deviation of total losses is a natural metric to consider, as it 
reflects the variation of total operational losses; we have chosen to use the standard deviation 
of quarterly total losses instead of the standard deviation of annual total losses because the 
quarterly statistic provides a more granular measurement of variation. Finally, we also explore 
whether the average frequency of losses above certain thresholds is predictive of the tail of the 
operational loss distribution. While average frequency metrics ignore most of the information 
concerning loss severity, such metrics may still be more robust predictors of tail operational loss 
exposure than average losses or the standard deviation of losses because average frequency is 
more stable than the average or the standard deviation of total losses, as average frequency does 
not fluctuate significantly when a few tail losses enter a bank’s loss data.  

The operational risk literature has shown that financial statement variables help predict 
operational losses. Chernobai et al. (2011) showed that the market value of equity, the return on 
equity, the tier 1 capital ratio, and other financial measures are predictive of the frequency of 
operational losses. Similarly, Abdymomunov (2014) showed that operational losses are positively 
related to total assets for some event types and negatively related for other event types. In this 
paper, we primarily rely on gross income to proxy for the impact of firm size on operational loss 
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exposure. Gross income is the proxy indicator used in the Basel II standardized approaches for 
operational risk capital (Basel Committee on Banking Supervision 2006). Perhaps surprisingly, the 
relationship between gross income and operational losses has not been thoroughly examined in 
the literature. The regressions of Cope et al. (2011) show that gross income appears to be 
negatively related to operational loss severity; however, the authors do not emphasize this result 
in their conclusions. Also, when the Basel II Accord was published, the Basel Committee in 
Banking Supervision did not provide analysis supporting the use of gross income a proxy for 
operational risk. For these reasons and given the use of gross income in the Basel framework, we 
are interested in assessing whether gross income predicts operational loss exposure. As a 
robustness check, we have also performed the regressions using total assets instead of gross 
income, and results are qualitatively similar.  

3 – Data 

The analysis in this paper includes 31 bank holding companies that participated in CCAR 2015 (list 
provided in Annex 1). Two types of data are used: operational loss event data, obtained from 
Federal Reserve’s Y-14Q regulatory report; and financial statement data, including gross income 
and total assets, obtained from Federal Reserve’s Y-9C regulatory report. Loss information is used 
from 2000 or as far back as available in the Y-14Q reports.6 Matching up all available loss data 
with financial statement data is possible for all institutions in our sample; for most institutions, 
financial statement data is available for a much longer period than loss data. 

Calculating gross income involves two steps: first, for each year we sum item 3 (“Net interest 
income”) and item 5.m (“Total noninterest income”) from the schedule HI of the Y-9C report; 
second, we average over a rolling window of three years, excluding any negative values, as 
prescribed by the Basel II framework. For example, to calculate the average gross income for 
2014, we average the gross income of 2012, 2013, and 2014. According to the Basel II Accord, 
the goal of averaging gross income over a three year window is to stabilize the resulting capital 
estimates; we use the three year average gross income because we agree that increasing the 
stability of this metric is sensible for our purposes and because we want to be consistent with 
the measure used in the Basel framework. Total assets for a given year are simply the figure 
reported in item 12 (“Total assets”) of the schedule HC of the Y-9C report at the end of the fourth 
quarter of the year of interest. 

Table 1 presents the descriptive statistics of the loss data, gross income and total assets used in 
the regressions of this paper. Descriptive statistics are presented for ratio of loss metrics to total 

                                                           
6 Some banks have reported losses before 2000. However, such data is likely incomplete, and so we have opted to 
initiate our sample at 2000. 
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assets, instead of simply for the loss metrics, to preserve the confidentiality of banks loss 
information. Each bank year combination is an independent observation. 

Table 1 
Descriptive Statistics 

Variable N Mean St Dev 10th Prct Median 90th Prct Coeff of 
variation 

Annual Losses/Total 
Assets 211 0.0011 0.0015 0.0002 0.0005 0.0025 1.4286 

Avg Annual Losses/Total 
Assets 211 0.0007 0.0007 0.0001 0.0006 0.0016 0.9128 

Std Dev Quarterly 
Losses/Total Assets 204 0.0004 0.0005 0.0000 0.0002 0.0012 1.2342 

109*Avg Frequency Above 
$20k/Total Assets 211 1.6023 1.0385 0.4572 1.4503 2.8291 0.6481 

109*Avg Frequency Above 
$100k/Total Assets 211 0.3455 0.2079 0.1283 0.2982 0.6206 0.6017 

109*Avg Frequency Above  
$1Mln/Total Assets 211 0.0405 0.0241 0.0158 0.0375 0.0712 0.5951 

109*Avg Frequency Above  
$10Mln/Total Assets 211 0.0058 0.0041 0.0012 0.0051 0.0113 0.7025 

Gross Income (Billion $) 211 28.58 38.01 3.44 10.38 103.12 1.3300 
Total Assets (Billion $) 211 526.65 697.27 63.25 174.17 1,868.35 1.3240 

Operational risk is significant for large US BHCs. On an average year, a large US BHC faces losses 
close to 0.11% of its total assets; while once in ten years BHCs in our sample lose at least 0.25% 
of their total assets. Given that large US BHCs are highly leveraged, this can represent a significant 
hit to their capital base. On average, large US BHCs funded 8.8% of their total assets with tier 1 
capital in 2014Q3.7 Thus, once every ten years, a BHC in our sample suffered operational losses 
that would erode more than 2.8% of their capital base if their tier 1 to assets ratio stood at the 
industry average.  

 

 

 

                                                           
7 Board of Governors of the Federal Reserve System, 2015, “Comprehensive Capital Analysis and Review 2015: 
Assessment Framework and Results.” 
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4 – Regression Methodology and Results 

a) Main Regression Results  

The conditional quantiles of the industry operational loss distribution are estimated through 
quantile regression.8 Losses from all CCAR bank holding companies are pooled in the regressions. 
Loss metrics at year t-1 are calculated using the loss data reported by banks until year t-1. 

Due to large size differences of banks in our sample, the conditional distribution of annual 
operational losses is likely heteroscedastic. To assess this issue, first, we performed an ordinary 
least squares (OLS) regression of operational losses on year t on average loss frequency above 
$100k up to year t-1 and average gross income for years t-3 to t-1; then, we calculated the 
correlation between absolute values of residuals of this regression and banks total assets – this 
correlation is 55.8%. Therefore, regression residuals increase significantly in absolute value with 
banks total assets, which implies that residuals are not identically distributed and, thus, that un-
weighted regressions are inefficient.  

To increase the efficiency of the estimation procedure, we divide all observations by the bank’s 
total assets at the end of year t-1. Repeating the procedure of calculating an OLS regression on 
the transformed data, and then calculating the correlation between regression residuals and 
total assets, we find a correlation of 22.3%. So, for the OLS regression, the normalization we 
employed significantly diminished heteroscedasticity and, thus, increased regression efficiency. 
This increase in efficiency is likely to also apply to the quantile regressions we are interested in. 
So, we divide all observations by banks total assets at the end of year t-1 in the quantile 
regressions calculated in this paper; the quantile regressions we estimate produce the following 
conditional quantile fitted values: 

�
𝑂𝑂𝑂𝑂𝚤𝚤,𝑡𝑡

𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝚤𝚤,𝑡𝑡−1
�
𝑞𝑞�

=
𝛼𝛼𝑞𝑞�

𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝑖𝑖,𝑡𝑡−1
+ 𝛽𝛽𝑞𝑞�

𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝑖𝑖,𝑡𝑡−1
𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝑖𝑖,𝑡𝑡−1

+ 𝛾𝛾𝑞𝑞�
𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝑖𝑖,𝑡𝑡−1

𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝑖𝑖,𝑡𝑡−1
 

Empirical bootstrapping is used to estimate the confidence intervals of model parameters. We 
employ the (x,y)-pair bootstrap technique, whereby pairs of observations from the original 
sample are sampled with replacement and model parameters are re-estimated multiple times. 
Parameter confidence intervals are calculated according to the percentile method, whereby 
confidence boundaries correspond to the appropriate percentiles of the distribution of the 
bootstrapped parameter estimates.9 Note that when this technique is used, confidence intervals 

                                                           
8 See Koenker and Basset (1978), Koenker and Hallock (2001), and Koenker (2005) for descriptions of the theory and 
use of quantile regression. 
9 For further description of how to employ bootstrapping techniques to estimate parameter uncertainty in quantile 
regressions see Koenker (2005).  
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generally will not be symmetrical around the coefficient estimate because estimators are not 
normally distributed in small samples. Our uncertainty estimates are based on 1000 re-samples.  

Tables 2 presents the results of regressions where the 90th quantile of operational losses are 
forecasted using the different loss metrics described in Section 2 jointly with gross income. Tables 
4 and 5 provide regression results for the 95th and 99th quantiles, respectively. 

Table 2 

 Quantile Regressions – 90th Quantile 
Explanatory 

Variables (1B) (2B) (3B) (4B) (5B) 

109×Avg Frequency 
Above 100k 

0.004** 
[0.001,0.008] -- -- -- -- 

109×Avg Frequency 
Above 1MM 

-- 0.032*** 
[0.012,0.047] -- -- -- 

109×Avg Frequency 
Above 10MM 

-- -- 0.112*** 
[0.059,0.204] -- -- 

Avg Annual Losses -- -- -- 1.461** 
[0.378,1.976] -- 

Std Dev Quarterly 
Losses 

-- -- -- -- 1.108* 
[-0.239,2.529] 

Gross Income 0.029*** 
[0.007,0.047] 

0.033*** 
[0.017,0.048] 

0.044*** 
[0.023,0.054} 

0.026*** 
[0.011,0.046] 

0.037*** 
[0.020,0.65] 

Q. Reg. Objective 
Function 

0.0673 0.0675 0.0684 0.0680 0.0687 

Note: N = 211 for all regressions except (5B). N = 204 for regression (5B). Coefficient 95% 
confidence intervals in brackets. *** = significant at 1%; ** = significant at 5%; * = 
significant at 10%. 
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Table 3 

 Quantile Regressions – 95th Quantile 
Explanatory 

Variables (1C) (2C) (3C) (4C) (5C) 

109×Avg Frequency 
Above 100k 

0.007** 
[0.001,0.010] -- -- -- -- 

109×Avg Frequency 
Above 1MM 

-- 0.041*** 
[0.010,0.096] -- -- -- 

109×Avg Frequency 
Above 10MM 

-- -- 0.120*** 
[0.016,0.385] -- -- 

Avg Annual Losses -- -- -- 1.252 
[-0.551,3.474] -- 

Std Dev Quarterly 
Losses 

-- -- -- -- -0.337 
[-2.038,4.935] 

Gross Income 0.029*** 
[0.009,0.089] 

0.038*** 
[0.016,0.088] 

0.070*** 
[0.029,0.095] 

0.039*** 
[0.011,0.097] 

0.095*** 
[0.021,0.144] 

Q. Reg. Objective 
Function 

0.0490 0.0499 0.0504 0.0526 0.0528 

Note: N = 211 for all regressions except (5C). N = 204 for regression (5C). Coefficient 95% 
confidence intervals in brackets. *** = significant at 1%; ** = significant at 5%. 

Table 4 

 Quantile Regressions – 99th Quantile 
Explanatory 

Variables (1D) (2D) (3D) (4D) (5D) 

109×Avg Frequency 
Above 100k 

0.010** 
[0.000,0.027] -- -- -- -- 

109×Avg Frequency 
Above 1MM 

-- 0.057* 
[-0.005,0.189] -- -- -- 

109×Avg Frequency 
Above 10MM 

-- -- 0.121  
[-0.080,0.564] -- -- 

Avg Annual Losses -- -- -- 1.636 
[-1.385,11.536] -- 

Std Dev Quarterly 
Losses 

-- -- -- -- 1.044 
[-5.066,4.303] 

Gross Income 0.083* 
[-0.008,0.133] 

0.108** 
[0.015,0.207] 

0.156*** 
[0.034,0.257] 

0.108*** 
[0.034,0.270] 

0.151*** 
[0.079,0.282] 

Q. Reg. Objective 
Function 

0.0162 0.0170 0.0177 0.0182 0.0175 

Note: N = 211 for all regressions except (5D). N = 204 for regression (5D). Coefficient 95% 
confidence intervals in brackets. *** = significant at 1%; ** = significant at 5%; * = significant at 
10%. 
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Simple summary metrics of past losses are predictive of future operational losses, even in the tail 
of the distribution.10 Average annual total losses are predictive of future losses until somewhere 
between the 90th and the 95th quantile. Similarly, the standard deviation of quarterly losses is 
weakly predictive of future 90th quantile losses, as it is statistically significant at 10%, but it is not 
predictive of 95th quantile losses and above.  

Frequency measures of past losses perform even better than the average and standard deviation 
of past total losses in predicting the tail of future total losses.11 Of the different loss metrics 
considered, the regressions including average loss frequency above $100k result in the lower 
values of the quantile regression objective function for the 90th, 95th, and 99th quantiles; this 
implies that, when considered together with gross income, average loss frequency above $100k 
appears to be the best predictor of future tail losses among the metrics considered. Also, unlike 
other loss metrics, average frequency above $100k is statistically significant at 5% in predicting 
operational losses up to the 99th quantile. An additional loss event above $100k per year implies, 
approximately, a $3.7MM larger 90th quantile, a $7.4MM larger 95th quantile, and a $10.1MM 
larger 99th quantile of the distribution of total annual operational losses. 

The superiority of frequency measures relative to measures based on total losses (such as the 
average annual total losses or the standard deviation of quarterly total losses) is likely the 
outcome of frequency measures being more stable proxies for risk exposure, as they do not 
fluctuate significantly when new tail losses are incurred. The higher stability of frequency metrics 
is demonstrated by their lower coefficient of variation: the coefficients of variation for average 
frequency above $100k and for average frequency above $1MM are approximately equal to 60%, 
while the coefficient of variation of average total annual losses is approximately 91% and the 
coefficient of variation of the standard deviation of quarterly total losses is approximately 123%.  
Likewise, frequency metrics based on lower thresholds likely perform better than frequency 
measures based on higher thresholds – average frequencies above $100k and $1MM perform 
better than average frequency above $10MM – because average loss frequencies at lower 
thresholds are more stable metrics of risk exposure. Moreover, by focusing on smaller losses, the 
lower threshold frequency measures provide more granular information on the exposure of 
banks, which appears to be connected with tail exposure.    

Gross income, in combination with any of the loss metrics considered, is a statistically significant 
predictor of tail operational losses for all quantiles considered. When used in combination with 
average loss frequency above $100k, a $100 increase in gross income implies a $2.9 increase of 

                                                           
10 See Annex 2 for results of the median regression. 
11 Average frequency above $20k was also considered as an explanatory variable. However, it led to inconsistent 
results, likely due to the lower quality of loss data between $20k and $100k. Banks’ collection practices of smaller 
dollar losses are often inconsistent across the sample period and generally less reliable.  
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the 90th and 95th quantiles and an $8.3 increase of the 99th quantile of the distribution of total 
annual operational losses.   

In summary, both metrics of past losses and gross income are predictive of future operational 
tail risk, and the best forecast is obtained when they are combined.  

b) Robustness checks   

i) Firm and time fixed effects 

To assess the robustness of our results, we explore whether the coefficients associated with loss 
metrics and gross income remain significant when firm heterogeneity and time-specific 
systematic differences are controlled for. For this purpose, we run quantile regressions with firm 
and time fixed effects. Similar to the main regressions, we divided both the dependent and the 
explanatory variables by total assets to decrease the heteroscedasticity of data, and thus the 
fitted conditional quantiles follow the expression below: 

�
𝑂𝑂𝑂𝑂𝚤𝚤,𝑡𝑡

𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝚤𝚤,𝑡𝑡−1
�
𝑞𝑞�

=
𝛼𝛼𝚤𝚤
𝑞𝑞�

𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝑖𝑖,𝑡𝑡−1
+

𝜏𝜏𝑡𝑡
𝑞𝑞�

𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝑖𝑖,𝑡𝑡−1
+ 𝛽𝛽𝑞𝑞�

𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝑖𝑖,𝑡𝑡−1
𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝑖𝑖,𝑡𝑡−1

+ 𝛾𝛾𝑞𝑞�
𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐼𝐼𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑖𝑖,𝑡𝑡−1

𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝑖𝑖,𝑡𝑡−1
 

In most cases, the magnitude of coefficients does not change significantly when fixed effects are 
introduced. However, their statistical significance generally diminishes.12 Table 5 presents the 
results of the fixed effects regressions when average frequency above $100k and gross income 
are used as explanatory variables for the 90th, 95th, and 99th quantiles.  

Table 5 

 Quantile Regressions 
Explanatory 

Variables 90th Qtl 95th Qtl 99th Qtl 

109×Avg Frequency 
Above 100k 

0.004* 
[-0.001,0.008] 

0.007  
[-0.001,0.010] 

0.004 
[-0.000,0.024] 

Gross Income 0.015** 
[0.001,0.042] 

0.012* 
[-0.000,0.055] 

0.046* 
[-0.000,0.086] 

Note: N = 211 for all regressions. Coefficient 95% confidence intervals in 
brackets. ** = significant at 5%; * = significant at 10%. 

The coefficients of the average frequency above $100k have a similar magnitude in the quantile 
regressions forecasting the 90th and 95th quantiles of the operational loss distribution when fixed 
effects are included and when fixed effects are not included; the statistical significance of the 

                                                           
12 The same empirical bootstrapping technique is used to estimate statistical significance as in the non-fixed effects 
regressions. 



11 
 

coefficients is reduced, but the coefficient is still significant at 10% in the regression of the 90th 
quantile and almost statistically significant at 10% in the 95th quantile regression. The coefficient 
of the average frequency above $100k in the 99th quantile regression has a much smaller 
magnitude in the fixed effects regression than in the non-fixed effects regression. Nevertheless, 
and despite the large standard error of the coefficient, the coefficient of the 99th quantile fixed 
effects regression is still close to significant at 10%.  

The reduction of the significance of past losses of the loss metrics in the fixed effects regression 
indicate that, once firm-specific and year-specific heterogeneity are controlled for, past losses 
add less value in predicting future losses. A possible explanation for the reduced significance of 
past losses is that the risk profile and risk management characteristics that past losses proxy do 
not fluctuate significantly with the fluctuation of the simple loss metrics we considered; and thus, 
in a fixed effects regression where the coefficient of past losses is estimated from within-firm 
variation, the effect of the firm risk profile and risk management characteristics, proxied by our 
simple loss metrics, on operational losses cannot be distinguished from firm fixed effects.  

While these results question the robustness of the results of the previous regressions, they do 
not imply that past losses are not useful metrics to consider. What drives firm-specific effects and 
how they evolve through time is unclear, but past losses appear to be good proxies for them.  

ii) Accounting for risk management measures 

We also investigated whether the predictive ability of past losses is robust to the inclusion of risk 
management metrics. Chernobai et al. (2011) and Wang and Hsu (2013) have shown that 
governance and risk management measures are predictive of operational losses. Replicating their 
methodology is beyond the scope of this paper; nevertheless, we are interested in assessing 
whether the risk management metrics collected by the Federal Reserve add value in predicting 
operational losses.  

We focus our analysis on the Federal Reserve’s composite risk management rating for BHCs and 
its subcomponents: board and senior management oversight; policies, procedures and limits; risk 
monitoring and management information systems; and internal Controls. The ratings reflect the 
effectiveness of the banking organization’s risk management and controls. The values of this 
metrics vary between one and five – one being the best rating and five the worst rating – and are 
based on the evaluations of Federal Reserve examiners. Table 6 presents the descriptive statistics 
of the risk management metrics considered in our robustness test. 
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Table 6 
Descriptive Statistics 

Rating N Mean St Dev 10th Prct Median 90th Prct Coeff of 
variation 

Composite 191 2.31 0.56 2.00 2.00 3.00 0.24 

Board and Senior 
Management Oversight 191 2.25 0.50 2.00 2.00 3.00 0.22 

Policies, Procedures and 
Limits 191 2.25 0.46 2.00 2.00 3.00 0.20 

Risk Monitoring and 
Management Information 

Systems 
191 2.47 0.56 2.00 2.00 3.00 0.23 

Internal Controls 191 2.25 0.46 2.00 2.00 3.00 0.20 

None of the metrics proved predictive of future losses, and their inclusion in the forecasting 
regressions did not change substantially the magnitude of the coefficients of past loss metrics. 
As an example, we present the regression results when the Federal Reserve measures of risk 
management are combined with average loss frequency above $100k and gross income to 
predict the 95th quantiles of the annual operational loss distribution. To ensure that the risk 
management metrics are in a similar scale to the dependent variable, the metrics are scaled by 
total assets, and so the estimated quantile function is 

� 𝑂𝑂𝑂𝑂𝚤𝚤,𝑡𝑡
𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝚤𝚤,𝑡𝑡−1

�
𝑞𝑞�

= 𝛼𝛼𝑞𝑞�

𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝑖𝑖,𝑡𝑡−1
+ 𝜃𝜃𝑞𝑞�𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑖𝑖,𝑡𝑡−1 + 𝛽𝛽𝑞𝑞� 𝐴𝐴𝐴𝐴𝑔𝑔𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹100𝑘𝑘𝑖𝑖,𝑡𝑡−1

𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝑖𝑖,𝑡𝑡−1
+ 𝛾𝛾𝑞𝑞� 𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝑖𝑖,𝑡𝑡−1

𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝑖𝑖,𝑡𝑡−1
  

Table 7 presents the regression results for the 95th quantile of the annual operational loss 
distribution. 
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Table 7 

 Quantile Regressions  
Explanatory 

Variables 95th Qtl 95th Qtl 95th Qtl 95th Qtl 95th Qtl 

Composite -0.003 
[-0.077,0.139] -- -- -- -- 

Board and Senior 
Management 

Oversight 
-- -0.055 

[-0.103,0.015] -- -- -- 

Policies, Procedures 
and Limits 

-- -- -0.007 
[-0.073,0.113] -- -- 

Risk Monitoring and 
Management 

Information Systems 
-- -- -- -0.038 

[-0.104,0.029] -- 

Internal Controls -- -- -- -- -0.013 
[-0.084,0.157] 

109×Avg Frequency 
Above 100k 

0.007** 
[0.001,0.010] 

0.006** 
[0.001,0.011] 

0.005** 
[0.001,0.010] 

0.007** 
[0.001,0.009] 

0.007** 
[0.000,0.011] 

Gross Income 0.033**  
[0.007,0.090] 

0.036*** 
[0.008,0.096] 

0.050*** 
[0.009,0.090] 

0.039*** 
[0.010,0.093] 

0.029*** 
[0.008,0.090] 

Note: N = 199 for all regressions. Coefficient standard errors in parenthesis. *** = significant at 1%; ** 
= significant at 5%; * = significant at 10%. 

The Federal Reserve risk management metrics do not have a statistically significant relation with 
future operational losses; at the same time, the magnitude and statistical significance of the 
coefficient of the frequency of losses above $100k does is not substantially change in comparison 
to the regressions that did not include risk management metrics. So, the predictive ability of loss 
frequency is robust to the inclusion of the Federal Reserve’s risk management metrics. 

iii) Using total assets instead of gross income 

Total assets are highly correlated with gross income (ρ = 95.9%), and thus using one or the other 
in the quantile regressions results in qualitatively similar results. Table 8 presents the regressions 
results when average frequency above $100k and total assets are used to predict the 90th, 95th, 
and 99th quantiles of the annual operational loss distribution.  
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Table 8 

 Quantile Regressions 
Explanatory 

Variables 90th Qtl 95th Qtl 99th Qtl 

109×Avg Frequency 
Above 100k 

0.004*** 
[0.001,0.008] 

0.007** 
[0.000,0.013] 

0.013* 
(-0.002,0.020] 

Total Assets 0.001*** 
[0.000,0.003] 

0.002** 
[0.000,0.006] 

0.005** 
[0.000,0.011] 

Note: N = 211 for all regressions. Coefficient 95% confidence intervals in 
brackets. *** = significant at 10%; ** = significant at 5%; * = significant at 
10%. 

Total assets are statistically significant in predicting tail quantiles of the operational loss 
distribution. Once average loss frequency above $100k is controlled for, a $1000 increase in total 
assets results in a $1.4 increase in the 90th quantile, a $2 increase in the 95th quantile, and a $4.9 
increase in the 99th quantile of the annual operational loss distribution. The magnitude and 
statistical significance of the coefficients associated with average frequency above $100k are not 
significantly affected by using total assets instead of gross income. In what concerns tail 
operational risk, total assets and gross are similarly informative measures of bank size.  

iv) Block bootstrapping  

To assess the statistical robustness of our results we used block bootstrapping, a technique that 
addresses dependence within clusters of observations by bootstrapping clusters of observations 
as a block, rather than independently (Cameron et al. 2008). In our implementation of the block 
bootstrap procedure, in each replication we sampled with replacement from the 31 BHCs for 
which we have data, until the bootstrap sample included data for 31 firms. Given that the number 
of years of data available varies across firms, our final bootstrap samples have a variable number 
of observations but generally close to our total sample size of 211.  

Coefficient standard errors and confidence intervals do not change significantly when 
observations from a firm are treated as a block and drawn together in the resampling procedure. 
Table 9 compares the (x,y)-pair bootstrapping standard errors and confidence intervals for the 
estimates of the coefficient of average loss frequency above $100k in the quantile regressions 
with the statistics obtained using block bootstrapping.  
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Table 9 

 Quantile Regressions 
109×Avg Frequency 

Above 100k 90th Qtl 95th Qtl 99th Qtl 

Coefficient 
Estimate 

0.0037 0.0074 0.0101 

 (X,Y)-Pair Bootstrapping 
Lower Bound of 

95% Conf Interval 
0.0013 0.0013 0.0003 

Upper Bound of 
95% Conf Interval 

0.0079 0.0095 0.0272 

 Block Bootstrapping 
Lower Bound of 

95% Conf Interval 
0.0005 0.0016 -0.0002 

Upper Bound of 
95% Conf Interval 

0.0079 0.0087 0.0268 

Note: N = 211 for all regressions.  

Confidence intervals grow a little wider for 90th and the 99th quantile regressions, but shrink a bit 
for the 95th quantile regression. Overall, the change is small. Therefore, accounting dependence 
between observations of the same firm does not significantly affect the uncertainty of estimates 
in this sample. 

An additional robustness analysis around the simultaneous use of multiple loss metrics in 
forecasting the tail of the operational loss distribution is presented in Annex 3.  

5 – Conclusion 

Operational risk practitioners have typically relied on past operational losses to model the 
distribution of future operational losses. In this paper we provide evidence that past operational 
losses are a useful metric to predict operational loss exposure, including tail exposure. Metrics 
associated with loss frequency prove the most robust in forecasting exposure, likely because they 
are more stable proxies for risk exposure as they do not fluctuate significantly when new tail 
losses are incurred. However, financial regulators should interpret these findings with caution. 
Using frequency metrics to measure exposure can lead to undesirable incentives, as breaking loss 
events into smaller loss events or aggregating them into larger loss events would have capital 
implications.  

Unsurprisingly, the analysis shows that loss metrics are statistically stronger predictors of 
operational loss exposure at lower quantiles. Thus, these results suggest that setting operational 
risk capital requirements at a lower confidence level than 99.9% - and then scaling up capital 
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requirements to maintain conservatism – may be a desirable change to capital framework, to 
increase estimation stability and accuracy.  

Also, our analysis shows that once firm-specific and year-specific effects are accounted for, past 
loss metrics lose statistical significance. This finding raises the possibility that other firm and year 
specific characteristics may better predict operational loss exposure. However, this finding does 
not deny the usefulness of operational losses in predicting exposure, when other better 
measures of firm-specific exposure are not available.  

Finally, our analysis shows a robust link between firm size, measured either through gross income 
or total assets, and operational loss exposure. This suggests that a risk sensitive capital 
framework for operational risk should account for firm size.  
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Annex 1 

List of bank holding companies included in the analysis: 

Ally Financial Inc. Huntington Bancshares Incorporated 
American Express Company JPMorgan Chase & Co. 
Bank of America Corporation KeyCorp 
The Bank of New York Mellon Corporation M&T Bank Corporation 
BB&T Corporation Morgan Stanley 
BBVA Compass Bancshares, Inc. MUFG Americas Holdings Corporation 
BMO Financial Corp. Northern Trust Corporation 
Capital One Financial Corporation The PNC Financial Services Group, Inc. 
Citigroup Inc. Regions Financial Corporation 
Citizens Financial Group, Inc. Santander Holdings USA, Inc. 
Comerica Incorporated State Street Corporation 
Deutsche Bank Trust Corporation SunTrust Banks, Inc. 
Discover Financial Services U.S. Bancorp. 
Fifth Third Bancorp. Wells Fargo & Co. 
The Goldman Sachs Group, Inc. Zions Bancorporation 
HSBC North America Holdings Inc.  
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Annex 2 

Results of median regression 

Tables A1 presents the results of regressions where the median of the operational loss 
distribution is predicted using the different loss metrics described in Section 2 together with gross 
income.  

Table A1 

 Quantile Regressions – 50th Quantile 
Explanatory 

Variables (1A) (2A) (3A) (4A) (5A) 

109×Avg 
Frequency Above 

100k 

0.001*** 
[0.000,0.002] -- -- -- -- 

109×Avg 
Frequency Above 

1MM 
-- 0.012*** 

[0.06,0.016] -- -- -- 

109×Avg 
Frequency Above 

10MM 
-- -- 0.043*** 

[0.022,0.067] -- -- 

Avg Annual Losses -- -- -- 0.386*** 
[0.232,0.613] -- 

Std Dev Quarterly 
Losses 

-- -- -- -- 0.426*** 
[0.219,0.833] 

Gross Income 0.007*** 
[0.004,0.012] 

0.006*** 
[0.003,0.011] 

0.009*** 
[0.006,0.013] 

0.007*** 
[0.005,0.010] 

0.009*** 
[0.006,0.013] 

Q. Reg. Objective 
Function 

0.0741 0.0729 0.0749 0.0730 0.0721 

Note: N = 211 for all regressions except (5A). N = 204 for regression (5A). Coefficient 95% 
confidence intervals in brackets. *** = significant at 1%; ** = significant at 5%.  

The metrics of loss experience considered are statistically significant predictors of the median of 
the annual operational loss distribution. In the case of the median, the regression including 
average frequency above $1MM appears to perform the best; nevertheless, the regression 
specifications considered have similar predictive power.13  

                                                           
13 The objective function of the quantile regressions assumes the lowest value for the quantile regression including 
the standard deviation of quarterly operational losses. However, this regression has a smaller sample than the other 
regressions, and so results are not comparable. When the regressions using other explanatory variables are 
restricted to the sample for which the standard deviation of quarterly losses is available, the regression including 
the standard deviation of quarterly losses performs the worst.  
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Gross income is also always statistically significant in predicting median losses; its coefficient 
varies between 0.006 and 0.009. 
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Annex 3 

Using multiple loss metrics 

In the main regressions of this paper, only one loss metric is used at a time. We have followed 
this approach because the loss metrics considered are highly correlated, and so it is not possible 
to robustly use them in combination to forecast future losses. Table A2 presents the linear 
correlation between the loss metrics used in this paper.  

Table A2 

Correlation 
Matrix 

Avg 
Frequency 

Above 100k 

Avg 
Frequency 

Above 1MM 

Avg 
Frequency 

Above 10MM 

Avg Annual 
Losses 

Std Dev 
Quarterly 

Losses 
Avg Frequency 

Above 100k 
1 -- -- -- -- 

Avg Frequency 
Above 1MM 

0.9579 1 -- -- -- 

Avg Frequency 
Above 10MM 

0.8993 0.9706 1 -- -- 

Avg Annual 
Losses 

0.8949 0.9148 0.9075 1 -- 

Std Dev 
Quarterly Losses 

0.8378 0.8289 0.8180 0.9691 1 

Note: N = 211 for all correlation coefficients except those including the standard deviation of 
quarterly losses. N = 204 for the correlation coefficients including the standard deviation of 
quarterly losses. 

To demonstrate how combining multiple loss metrics leads to non-robust and inconsistent 
results, we present two examples in Tables A3 and A4. Table A3 presents regression results when 
loss frequency above $100k, average annual losses and gross income are combined to forecast 
the 90th, 95th, and 99th quantiles of the annual operational loss distribution; while  
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Table A3 

 Quantile Regressions 
Explanatory 

Variables 90th Qtl 95th Qtl 99th Qtl 

109×Avg Frequency 
Above 100k 

0.002* 
[-0.000,0.007] 

0.007* 
[-0.000,0.011] 

0.009 
[-0.004,0.030] 

Avg Annual Losses 0.629 
[-0.277,1.704] 

0.470 
[-1.576,1.732] 

-1.873 
[-4.923,4.710] 

Gross Income 0.023** 
[0.002,0.043] 

0.023** 
[0.005,0.090] 

0.071* 
[-0.003,0.172] 

Note: N = 211 for all regressions. Coefficient 95% confidence intervals in 
brackets. *** = significant at 1%; ** = significant at 5%; * = significant at 10%. 

When frequency above $100k is combined with average annual losses in forecasting quantiles of 
the operational loss distribution, unsurprisingly, the magnitudes of the coefficients of both 
metrics are reduced in comparison to when the metrics are used separately. But the coefficient 
estimates also become more uncertain, particularly the coefficient estimates associated with 
average annual losses. In the 99th quantile regression, the coefficient associated with average 
annual losses even becomes negative, although not statistically significant. Thus, combining loss 
frequency above $100k with average annual losses does not appear to be a promising approach 
to predict tail operational loss exposure.  

Table A4 presents the regression results for the same quantiles when average annual losses are 
combined with the standard deviation of quarterly losses and gross income. 

Table A4 

 Quantile Regressions 
Explanatory 

Variables 90th Qtl 95th Qtl 99th Qtl 

Avg Annual Losses 2.502*** 
[0.654,5.750] 

3.286** 
[0.317,10.426] 

0.327 
[-1.258,24.652] 

Std Dev Quarterly 
Losses 

-2.135 
[-5.782,0.175] 

-3.056 
[-10.877,0.866] 

0.729 
[-26.276,7.346] 

Gross Income 0.028** 
[0.003,0.044] 

0.039** 
[0.004,0.095] 

0.147* 
[-0.013,0.207] 

Note: N = 204 for all regressions. Coefficient 95% confidence intervals in 
brackets. *** = significant at 1%; ** = significant at 5%; * = significant at 10%. 

Similar to when average frequency above $100k and annual average losses are combined to 
forecast quantiles of the operational loss distribution, when annual average losses and the 
standard deviation of quarterly losses are combined the uncertainty associated with coefficient 
estimates increases. In this case, the coefficient estimates associated with average annual losses 
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increase substantially in the regressions of the 90th and 95th quantiles, while the coefficient 
estimates with the standard deviation of quarterly losses are negative (but not significant). These 
results are likely spurious and driven by the very high correlation between average annual losses 
and the standard deviation of quarterly losses (96.9%). Again, we believe these results 
demonstrate that combining multiple loss metrics in forecasting tail exposure produces non-
robust results due to the small sample available and the high correlation between loss metrics.  


