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Abstract

This appendix describes some important details regarding aspects of the specifi-
cation and the estimation of the model used in Amisano and Tristani (2019). The
appendix is available at the following URL:

https://sites.google.com/site/gianniamisanowebsite/

A Model details

A.1 The household problem

The optimization problem is:

maxU [ut,EtVt+1] =

{
(1− β)u1−ψt + β

(
EtV

1−γ
t+1

) 1−ψ
1−γ
} 1

1−ψ

,

where ut is shorthand for u {Ct (j)− hΞtCt−1, 1−Nt (j)}, subject to

PtCt (j) + EtQt,t+1Wt+1 (j) ≤Wt (j) + wt (j)Nt (j) +

∫ 1

0
Ψt (i) di− Tt,

and

Nt (j) = Lt

(
wt (j)

wt

)−θw,t
,

where the choice variables are ws and cs.
The Bellman equation is

Jt = J (Wt) = max

{
(1− β)u1−ψt + β

[
EtJ

1−γ
t+1

] 1−ψ
1−γ
} 1

1−ψ

+

− Λt

[
PtCt + EtQt,t+1Wt+1 −Wt − wtNt −

∫ 1

0
Ψt (i) di+ Tt

]
,
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where

Nt (j) = Lt

(
wt (j)

wt

)−θw,t
and

∂Nt (j)

∂wt (j)
= −θw,t

Nt (j)

wt (j)
.

Using the aggregator function

U =
{

(1− β)u1−ψt + βv1−ψt

} 1
1−ψ

vt ≡
[
EtJ

1−γ
t+1

] 1
1−γ

,

we define

Uu,t = (1− β)
{

(1− β)u1−ψt + βv1−ψt

} ψ
1−ψ

u−ψt ,

Uv,t = β
{

(1− β)u1−ψt + βv1−ψt

} ψ
1−ψ

v−ψt .

The FOCs include
Uu,tuc,t = ΛtPt,

uN,tUu,t
∂Nt (j)

∂wt (j)
= −Λt

[
Nt (j) + wt (j)

∂Nt (j)

∂wt (j)

]
,

and, state-by-state

Uv,t

[
EtJ

1−γ
t+1

] γ
1−γ

J−γt+1JW,t+1 = ΛtQt,t+1,

JW,t+1 =
∂Jt+1

∂Wt+1

plus envelope
JW,t = Λt.

The FOCs can be rewritten as

ΛtPt
uc,t

= Uu,t,

uN,t
uc,t

=
1− θw,t
θw,t

wt (j)

Pt
,

Qt,t+1 = Uv,t

[
EtJ

1−γ
t+1

] γ
1−γ

J−γt+1

Λt+1

Λt
,

or

Qt,t+1 = β


[
EtJ

1−γ
t+1

] 1
1−γ

Jt+1


γ−ψ

u−ψt+1

u−ψt

uc,t+1

uc,t

1

Πt+1
.

Using the definition of µw,t, we obtain, as in the text,

−
uN,t
uc,t

= µw,t
wt (j)

Pt

and

Qt,t+1 = β

[
Et

(
Jt+1

Jt

)1−γ
] γ−ψ

1−γ (Jt+1

Jt

)−(γ−ψ)(ut+1

ut

)−ψ uc,t+1

uc,t

1

Πt+1
.
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A.2 Detrending

Given the stochastic trend Bt, define a detrended variable as x̃t ≡ xt/Bt. It follows that
we can rewrite the conditions above as

−
ũN,t
uc,t

=
θw,t − 1

θw,t

w̃t (j)

Pt
,

J̃1−ψ
t = (1− β) ũ1−ψt + β

[
EtΞ

1−γ
t+1 J̃

1−γ
t+1

] 1−ψ
1−γ

,

ũt = u
(
C̃t (j)− hC̃t−1, 1−Nt (j)

)
,

Qt,t+1 = β


[
EtJ̃

1−γ
t+1 Ξ1−γ

t+1

] 1
1−γ

J̃t+1Ξt+1


γ−ψ (

ũt+1

ũt

)−ψ uc,t+1

uc,t

1

Πt+1Ξ
ψ
t+1

.

A.3 Consumption

To second order, the Euler equation can be written as

−ît +
1

2
î2t = Etq̂t,t+1 +

1

2
Etq̂

2
t,t+1

where î2t can be derived using only first order terms to obtain

ît = −Etq̂t,t+1 −
1

2
Vartq̂t,t+1.

We rewrite the stochastic discount factor Qt,t+1 as

Λ̃t ≡ ũ−ψt uc,t,

Dt ≡ EtJ̃
1−γ
t+1 Ξ1−γ

t+1 ,

Qt,t+1 = β
D

γ−ψ
1−γ
t

J̃γ−ψt+1

Λ̃t+1

Λ̃t

1

Πt+1Ξ
γ
t+1

,

so that

q̂t,t+1 = ∆
̂̃
λt+1 − π̂t+1 − ψξ̂t+1 +

γ − ψ
1− γ

d̂t − (γ − ψ)
̂̃
jt+1.

Now, we expand d̂t to second order (again using only first order terms to evaluate d̂2t )
to find

d̂t = (1− γ) Etξ̂t+1 + (1− γ) Et
̂̃
jt+1 +

1

2
(1− γ)2 Vartξ̂t+1+

+
1

2
(1− γ)2 Vart

̂̃
jt+1 + (1− γ)2 Covtξ̂t+1

̂̃
jt+1.

It follows that

q̂t,t+1 = ∆
̂̃
λt+1 − ψξ̂t+1 − π̂t+1 − (γ − ψ)

(
ξ̂t+1 +

̂̃
jt+1 − Et

[
ξ̂t+1 +

̂̃
jt+1

])
+

+
1

2
(1− γ) (γ − ψ) Vart

[
ξ̂t+1 +

̂̃
jt+1

]
.
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We now evaluate Etq̂t,t+1 and Vartq̂t,t+1 to obtain

Etq̂t,t+1 = Et∆
̂̃
λt+1 − ψEtξ̂t+1 − Etπ̂t+1 +

1

2
(1− γ) (γ − ψ) Vart

[
ξ̂t+1 +

̂̃
jt+1

]
,

and (using first order terms to evaluate q̂2t,t+1)

Etq̂
2
t,t+1 = Vart

[
∆
̂̃
λt+1 − ψξ̂t+1 − π̂t+1

]
+ (γ − ψ)2 Vart

[
ξ̂t+1 +

̂̃
jt+1

]
+

− 2 (γ − ψ) Covt

[
∆
̂̃
λt+1 − ψξ̂t+1 − π̂t+1, ξ̂t+1 +

̂̃
jt+1

]
.

Hence

ît = Et

[
−∆

̂̃
λt+1 + ψξ̂t+1 + π̂t+1

]
+

1

2
(γ − ψ) (ψ − 1) Vart

[
ξ̂t+1 +

̂̃
jt+1

]
+

− 1

2
Vart

[
∆
̂̃
λt+1 − ψξ̂t+1 − π̂t+1

]
+

+ (γ − ψ) Covt

[
∆
̂̃
λt+1 − ψξ̂t+1 − π̂t+1, ξ̂t+1 +

̂̃
jt+1

]

We now expand
̂̃
λt+1 and

̂̃
jt+1 for the specific case of the Trabandt and Uhlig (2011)

form for temporary utility, which we use in the paper

ũt =
(
C̃t − hC̃t−1

)(
1− η (1− ψ)N

1+ 1
φ

t

) ψ
1−ψ

.

The expression above, after defining surplus consumption ←→c t = C̃t − hC̃t−1, implies

Λ̃t =←→c −ψt
(

1− η (1− ψ)N
1+ 1

φ

t

)ψ
,

J̃1−ψ
t = (1− β)←→c t

←̃→
Λ t + β

[
EtΞ

1−γ
t+1 J̃

1−γ
t+1

] 1−ψ
1−γ

.

A.3.1 Expanding Λt

To second order

̂̃
λt +

1

2
̂̃
λ
2

t = −ψ←̂→c t − ψ
(

1 +
1

φ

)
η (1− ψ)N

1+ 1
φ

t

1− η (1− ψ)N
1+ 1

φ

t

l̂t +
1

2
ψ2←̂→c

2

t+

− 1

2
ψ

(
1 +

1

φ

)2 η (1− ψ)N
1+ 1

φ

t

(
1− ησ (1− ψ)N

1+ 1
φ

t

)
(

1− η (1− ψ)N
1+ 1

φ

t

)2 l̂2t+

+ ψ2

(
1 +

1

φ

)
η (1− ψ)N

1+ 1
φ

t

1− η (1− ψ)N
1+ 1

φ

t

←̂→c t l̂t,
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and using first order terms to evaluate
̂̃
λ
2

t

̂̃
λt = −ψ←̂→c t−ψ

(
1 +

1

φ

)
η (1− ψ)N

1+ 1
φ

t

1− η (1− ψ)N
1+ 1

φ

t

l̂t−
1

2
ψ

(
1 +

1

φ

)2 η (1− ψ)N
1+ 1

φ

t(
1− η (1− ψ)N

1+ 1
φ

t

)2 l̂
2
t

It follows that

∆
̂̃
λt+1 = −σ∆←̂→c t+1 − ψ

(
1 +

1

φ

)
n

1− n
∆l̂t+1 −

1

2
ψ

(
1 +

1

φ

)2 n

(1− n)2

(
l̂2t+1 − l̂2t

)
for

n ≡ η (1− ψ)N
1+ 1

φ

Surplus consumption ←→c t can be expanded as

←̂→c t =
1

1− h

(̂̃ct − ĥ̃ct−1)− 1

2

h

(1− h)2

(̂̃ct − ̂̃ct−1)2 ,
so that

∆
̂̃
λt+1 = −ψ 1

1− h

(
∆̂̃ct+1 − h∆̂̃ct)− ψ(1 +

1

φ

)
n

1− n
∆l̂t+1+

+
1

2
ψ

h

(1− h)2

[(
∆̂̃ct+1

)2
−
(

∆̂̃ct)2]− 1

2
ψ

(
1 +

1

φ

)2 n

(1− n)2

(
l̂2t+1 − l̂2t

)
.

A.3.2 Expanding J̃

Note that
̂̃
J t+1 only enters the interest rate in terms of second order. It can therefore be

evaluated to first order. We obtain

J̃1−ψ
t = (1− β)←→c tΛ̃t + βD

1−ψ
1−γ
t

so that

(1− ψ)
̂̃
jt =

(1− β)←→c Λ̃

(1− β)←→c Λ̃ + βD
1−ψ
1−γ

←̂→c t+
(1− β)←→c Λ̃

(1− β)←→c Λ̃ + βD
1−ψ
1−γ

̂̃
λt+

1− ψ
1− γ

βD
1−ψ
1−γ

(1− β)←→c Λ̃ + βD
1−ψ
1−γ

̂̃
dt

and, using d̂t ≡ (1− γ) Etξ̂t+1 + (1− γ) Et
̂̃
jt+1,

(1− ψ)
̂̃
jt =

(1− β)←→c Λ̃

(1− β)←→c Λ̃ + βD
1−ψ
1−γ

←̂→c t +
(1− β)←→c Λ̃

(1− β)←→c Λ̃ + βD
1−ψ
1−γ

̂̃
λt+

+ (1− ψ)
βD

1−ψ
1−γ

(1− β)←→c Λ̃ + βD
1−ψ
1−γ

(
Etξ̂t+1 + Et

̂̃
jt+1

)
.

Since to first order
̂̃
λt = −ψ←̂→c t − ψ

(
1 + 1

φ

)
η(1−ψ)N1+ 1

φ

1−η(1−ψ)N1+ 1
φ
l̂t, we further obtain

̂̃
jt =

(1− β)←→c Λ̃

(1− β)←→c Λ̃ + βD
1−ψ
1−γ

←̂→c t −
ψ

1− ψ

(
1 +

1

φ

)
η (1− ψ)N

1+ 1
φ

1− η (1− ψ)N
1+ 1

φ

(1− β)←→c Λ̃

(1− β)←→c Λ̃ + βD
1−ψ
1−γ

l̂t

+
βD

1−ψ
1−γ

(1− β)←→c Λ̃ + βD
1−ψ
1−γ

(
Etξ̂t+1 + Et

̂̃
jt+1

)
.
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Recall that in steady state

J̃1−ψ =
1− β

1− βΞ1−ψ
←→c Λ̃,

Λ̃ =←→c −ψ
(

1− η (1− ψ)N
1+ 1

φ

)ψ
,

D ≡ Ξ1−γ J̃1−γ ,

to obtain

̂̃
jt =

(
1− βΞ1−ψ

)(←̂→c t −
ψ

1− ψ

(
1 +

1

φ

)
n

1− n
l̂t

)
+ βΞ1−ψ

(
Etξ̂t+1 + Et

̂̃
jt+1

)
.

This can be solved forward to obtain

̂̃
jt + ξ̂t = lim

n→∞

n∑
i=0

[
βΞ1−ψ

]i
Et

[
ξ̂t+i +

(
1− βΞ1−ψ

)(←̂→c t+i −
ψ

1− ψ

(
1 +

1

φ

)
n

1− n
l̂t+i

)]
+

+ lim
n→∞

[
βΞ1−ψ

]n (
Etξ̂t+n + Et

̂̃
jt+n

)
.

Assuming that limn→∞
[
βΞ1−ψ]n (Etξ̂t+n + Et

̂̃
jt+n

)
= 0 and that the other sums con-

verge, we obtain

̂̃
jt + ξ̂t =

∞∑
i=0

(
βΞ1−ψ

)i
Et

[
ξ̂t+i +

(
1− βΞ1−ψ

)(←̂→c t+i −
ψ

1− ψ

(
1 +

1

φ

)
n

1− n
l̂t+i

)]
,

or using the first order expansion of ←̂→c t,

̂̃
jt+ξ̂t =

∞∑
i=0

(
βΞ1−ψ

)i
Et

[
ξ̂t+i +

(
1− βΞ1−ψ

)( 1

1− h

(̂̃ct+i − ĥ̃ct+i−1)− ψ

1− ψ

(
1 +

1

φ

)
n

1− n
l̂t+i

)]
.

Note that the first order approximation of temporary utility is

̂̃ut =
1

1− h

(̂̃ct − ĥ̃ct−1)− ψ

1− ψ

(
1 +

1

φ

)
n

1− n
l̂t.

Hence ̂̃
jt + ξ̂t =

∞∑
i=0

(
βΞ1−ψ

)i
Et

[
ξ̂t+i +

(
1− βΞ1−ψ

) ̂̃ut+i]
A.3.3 Second order approximation to the Euler equation

It follows that the second order approximation to the Euler equation, using also the

assumption Et

[
ξ̂t+1

]
= 0, can be written as

̂̃ct =
1

1 + h
Et̂̃ct+1 +

h

1 + h
̂̃ct−1 − 1

ψ

1− h
1 + h

(̂
it − Et [π̂t+1]

)
+

1− h
1 + h

(
1 +

1

φ

)
n

1− n
Et∆l̂t+1 −

1

2
VartΩt+1

+
1

2
(γ − ψ)

ψ − 1

ψ

1− h
1 + h

Vart

[
ξ̂t+1 +

̂̃
jt+1

]
− (γ − ψ)

1

ψ

1− h
1 + h

Covt

[
ψξ̂t+1 + π̂t+1, ξ̂t+1 +

̂̃
jt+1

]
− (γ − ψ)

1− h
1 + h

Covt

[
1

1− h

(
∆̂̃ct+1 − h∆̂̃ct)+

(
1 +

1

φ

)
n

1− n
∆l̂t+1, ξ̂t+1 +

̂̃
jt+1

]
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for

VartΩt+1 =
h

1− h2

[
Et

(
∆̂̃ct+1

)2
−
(

∆̂̃ct)2]− 1− h
1 + h

(
1 +

1

φ

)2 n

(1− n)2

(
Et l̂

2
t+1 − l̂2t

)
+

1

ψ

1− h
1 + h

Vart

[
ψ

1

1− h

(
∆̂̃ct+1 − h∆̂̃ct)+ ψ

(
1 +

1

φ

)
n

1− n
∆l̂t+1 + ψξ̂t+1 + π̂t+1

]
,

and ̂̃
jt+1 + ξ̂t+1 =

∞∑
i=0

(
βΞ1−ψ

)i
Et

[
ξ̂t+1+i +

(
1− βΞ1−ψ

) ̂̃ut+1+i

]
and

n = η (1− ψ)N
1+ 1

φ .

A.4 Expected excess holding period returns

Recall that

HPRn,t =
EtBn−1,t+1

Bn,t
,

and

ît,t+n = − 1

n
b̂t,t+n,

so that

HPR2,t =
EtB1,t+1

B2,t
,

To second order, expected holding period return are

ĥn,t +
1

2
ĥ2n,t = Etb̂n−1,t+1 − b̂n,t +

1

2
Etb̂

2
n−1,t+1 +

1

2
b̂2n,t − b̂n,tEtb̂n−1,t+1

with
1

2
ĥ2n,t =

1

2

(
Etb̂n−1,t+1

)2
+

1

2
b̂2n,t − b̂n,tEtb̂n−1,t+1,

so that

ĥn,t = −b̂n,t + Etb̂n−1,t+1 +
1

2
Etb̂

2
n−1,t+1 −

1

2

(
Etb̂n−1,t+1

)2
,

or

ĥn,t = −b̂n,t + Etb̂n−1,t+1 +
1

2
Vartb̂n−1,t+1,

and since bond prices are

b̂t,n = b̂t,1 + Etb̂t+1,n−1 +
1

2
Vartb̂t+1,n−1 + Covt

[
b̂t+1,n−1, q̂t,t+1

]
,

we can in general rewrite expected holding period returns as

ĥn,t = ît − Covt

[
b̂t+1,n−1, q̂t,t+1

]
.

Excess holding period returns are therefore

ĥn,t − ît = −Covt

[
b̂t+1,n−1, q̂t,t+1

]
.
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Using the approximated stochastic discount factor, we obtain

ĥn,t − ît = −Covt

[
b̂t+1,n−1,∆

̂̃
λt+1 − ψξ̂t+1 − π̂t+1 − (γ − ψ)

(
ξ̂t+1 +

̂̃
jt+1

)]
Now use the first order expansion of

̂̃
λt to write

ĥn,t−ît = Covt

[
b̂t+1,n−1,−

ψ

1− h
̂̃ct+1 − ψ

(
1 +

1

φ

)
n

1− n
l̂t+1 − ψξ̂t+1 − π̂t+1 − (γ − ψ)

(
ξ̂t+1 +

̂̃
jt+1

)]
.

Define the first order approximation of variable v as Fvx̂t. Then (note that we use Fj

to denote the first order approximation of the infinite sum ξ̂t+1 +
̂̃
jt+1)

ĥn,t−ît = Covt

[
FBn−1 x̂t+1,

(
ψ

1

1− h
Fc + ψ

(
1 +

1

φ

)
n

1− n
Fl + ψFξ + Fπ + (γ − ψ)Fj

)
x̂t+1

]
.

It follows that

ĥn,t − ît = Et

[
F ′Bn−1

x̂t+1x̂
′
t+1

(
ψ

1

1− h
Fc + ψ

(
1 +

1

φ

)
n

1− n
Fl + ψFξ + Fπ + (γ − ψ)Fj

)′]
+

− EtF
′
Bn−1

x̂
′
t+1Et

[
x̂′t+1

(
ψ

1

1− h
Fc + ψ

(
1 +

1

φ

)
n

1− n
Fl + ψFξ + Fπ + (γ − ψ)Fj

)′]
,

and using the law of motion for x̂t+1

ĥn,t−ît = σ̃2FBn−1Et
[
ut+1u

′
t+1

](
ψ

1

1− h
Fc + ψ

(
1 +

1

φ

)
n

1− n
Fl + ψFξ + Fπ + (γ − ψ)Fj

)′
A.5 Firms’ optimization problem

Under Rotemberg prices, firm j maximizes real profits

max
P jt

Et

∞∑
s=t

Qt,s

P js Y j
s

Ps
− ws
Ps

(
Y j
s

As

) 1
α

− ζ

2

(
P js

P js−1
− (Π∗)1−ι Πι

s−1

)2

Ys

 ,
subject to the total demand for its output

Yt (j) =

(
Pt (j)

Pt

)−θ
Yt,

and to the production function
Yt (j) = AtL

α
t (j) ,

where Lt is the labour index defined above.
The FOC is

0 = (1− θ)

(
P jt
Pt

)−θ
Yt

1

Pt
+
θ

α

wt
Pt

(
Yt
At

) 1
α

(
P jt
Pt

)− θ
α
−1

1

Pt
− ζ

(
P jt

P jt−1
− (Π∗)1−ι Πι

t−1

)
Yt

1

P jt−1
+

+ EtQt,t+1ζ

(
P jt+1

P jt
− (Π∗)1−ι Πι

t

)
Yt+1

P jt+1

P jt

1

P jt
,

or, noting that all firms will set the same price and expressing variables in detrended form,

(θ − 1) Ỹt+ζ
(

Πt − (Π∗)1−ι Πι
t−1

)
ỸtΠt =

θ

α

w̃t
Pt

1

Z
1
α
t

Ỹ
1
α
t +EtQt,t+1ζ

(
Πt+1 − (Π∗)1−ι Πι

t

)
Ỹt+1Ξt+1Πt+1.
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A.6 Equilibrium

Equilibrium is described by the following system:

• households

ΛtPt
uc,t

= (1− β) ũ−ψt J̃ψt ,

−
ũN,t
uc,t

=
θw,t − 1

θw,t

w̃t
Pt
,

J̃1−ψ
t = (1− β) ũ1−ψt + β

[
EtΞ

1−γ
t+1 J̃

1−γ
t+1

] 1−ψ
1−γ

,

ũt = u
(
C̃t − hC̃t−1, 1−Nt

)
,

Qt,t+1 = β
[
EtJ̃

1−γ
t+1 Ξ1−γ

t+1

] γ−ψ
1−γ J̃ψt

J̃γt+1Ξ
γ
t+1

Λt+1

Λt
;

• firms

(θ − 1) Ỹt = −ζ
(

Πt − (Π∗)1−ι Πι
t−1

)
ỸtΠt +

θ

α

w̃t
Pt

1

Z
1
α
t

Ỹ
1
α
t +

+ EtQt,t+1ζ
(

Πt+1 − (Π∗)1−ι Πι
t

)
Ỹt+1Ξt+1Πt+1;

• market clearing

Ỹt = C̃t + G̃t +
ζ

2

(
Πt − (Π∗)1−ι Πι

t−1

)2
Ỹt,

Nt = Ỹ
1
α
t Z

− 1
α

t ;

• policy rule

It =

(
Π∗Ξψt+1

β

)1−ρI (
Πt

Π∗t

)ψ
Π

(
Ỹt

Ỹ

)ψY
IρIt−1e

εIt+1 ;

• shocks
Ξt = Ξ

1−ρξΞ
ρξ
t−1e

εξt , εξt+1 ∼ N (0, σξ) ,

G̃t =
(
gỸ
)1−ρg

G̃
ρg
t−1e

εgt , εgt+1 ∼ N (0, σg) ,

µw,t+1 = µ
1−ρµ
w (µw,t)

ρµ eε
µ
t+1 , εµt+1 ∼ N (0, σµ) ,

Zt = Zρzt−1e
εzt , εzt+1 ∼ N

(
0, σz,sz,t

)
,

ηt+1 = eε
η
t+1 , εηt+1 ∼ N

(
0, ση,sη,t

)
;

• standard deviations

σz,sz,t = σz,0sz,t + σz,1 (1− sz,t) ,
ση,sη,t = ση,0sη,t + ση,1 (1− sη,t) ;

• C−1, I−1, Π−1 given.
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A.7 Numerical implementation

For the numerical implementation of the model, we scale the maximum value function by
a constant κ to increase accuracy. Define a dummy variable D̃t = EtΞ

1−γ
t+1 J̃

1−γ
t+1 /κ

1−γ . It

follows that κ1−γD̃t = EtΞ
1−γ
t+1 J̃

1−γ
t+1 . This implies

D̃t =
EtΞ

1−γ
t+1 J̃

1−γ
t+1

κ1−γ
,

J̃1−ψ
t = (1− β) ũ1−ψt + βκ1−ψD̃

1−ψ
1−γ
t ,

Qt,t+1 = β

κD̃ 1
1−γ
t

J̃t+1

γ−ψ (
ũt+1

ũt

)−ψ uc,t+1

uc,t

1

Ξγt+1

1

Πt+1
.

A.8 Functional forms

We rely on the Trabandt and Uhlig (2011) form for temporary utility, i.e.

ut = (Ct − hΞtCt−1)

(
1− η (1− ψ)N

1+ 1
φ

t

) ψ
1−ψ

.

As a result

w̃t
Pt

=
ηψ
(

1 + 1
φ

)(
C̃t − hC̃t−1

)
N

1
φ

t

1− η (1− ψ)N
1+ 1

φ

t

θw,t
θw,t − 1

,

J̃1−ψ
t = (1− β)

(
C̃t − hC̃t−1

)1−ψ (
1− η (1− ψ)N

1+ 1
φ

t

)ψ
+ βκ1−ψD̃

1−ψ
1−γ
t ,

Qt,t+1 = β

κD̃ 1
1−γ
t

J̃t+1

γ−ψ (
C̃t+1 − hC̃t
C̃t − hC̃t−1

)−ψ1− η (1− ψ)N
1+ 1

φ

t+1

1− η (1− ψ)N
1+ 1

φ

t

ψ

1

Ξγt+1

1

Πt+1
,

(θ − 1) Ỹt = −ζ
(

Πt − (Π∗t )
1−ι Πι

t−1

)
ỸtΠt +

θ

α

w̃t
Pt

(
Ỹt
Zt

) 1
α

+ ...

+ EtQt,t+1ζ
(

Πt+1 −
(
Π∗t+1

)1−ι
Πι
t

)
Ỹt+1Ξt+1Πt+1.

A.9 Elasticity of intertemporal substitution

We compute the elasticity of intertemporal substitution of consumption as the elasticity
of consumption to a change in the real interest rate holding labour supply constant.

Define the ”consumption surplus” ←→c t ≡ C̃t − hC̃t−1. The first order approximation
to the nominal stochastic discount factor

Qt,t+1 = β

κD̃ 1
1−γ
t

J̃t+1

γ−ψ (←→c t+1
←→c t

)−ψ1− η (1− ψ)N
1+ 1

φ

t+1

1− η (1− ψ)N
1+ 1

φ

t

ψ

1

Ξγt+1

1

Πt+1
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can be written as1

q̂t,t+1 = −ψ∆←̂→c t+1−ψ
(

1 +
1

φ

)
n

1− n
∆N̂t+1−ψξ̂t+1−π̂t+1−(γ − ψ)

(
ξ̂t+1 +

̂̃
jt+1 − Et

[
ξ̂t+1 +

̂̃
jt+1

])
,

where

̂̃
jt + ξ̂t =

∞∑
i=0

(
βΞ1−ψ

)i
Et

[
ξ̂t+i +

(
1− βΞ1−ψ

)(←̂→c t+i −
ψ

1− ψ

(
1 +

1

φ

)
n

1− n
N̂t+i

)]
.

As a result,

q̂t,t+1 = −ψ∆←̂→c t+1 − ψ
(

1 +
1

φ

)
n

1− n
∆N̂t+1 − ψξ̂t+1 − π̂t+1,

and the real rate is

r̂t = ψEt∆
←̂→c t+1 + ψ

(
1 +

1

φ

)
n

1− n
Et∆N̂t+1 + ψEtξ̂t+1.

Rearranging terms

←̂→c t = − 1

ψ
r̂t + Et

←̂→c t+1 +
1

ψ

(
1 +

1

φ

)
n

1− n
Et∆N̂t+1 + Etξ̂t+1,

so that the long-run elasticity of substitution EIS, i.e. the elasticity which is obtained
after households have adjusted their consumption habits, takes the usual value

EIS =
1

ψ
.

Note that, in the absence of habits, this expression boils down to the usual value 1/ψ.
To compute the short-run elasticity, we rewrite the consumption surplus in terms of

the underlying consumption levels to obtain

̂̃ct = − 1

ψ

1− h
1 + h

r̂t+
1

1 + h
Et̂̃ct+1+

h

1 + h
̂̃ct−1+

1− h
1 + h

(
1 +

1

φ

)
n

1− n
Et∆N̂t+1+

1− h
1 + h

Etξ̂t+1.

The short-run elasticity of substitution EIS is therefore

EIS =
1

ψ

1− h
1 + h

,

which again boils down to 1/ψ when h = 0. Note that, since h > 0, it is always the case
that EIS < EIS.

B Model estimation

B.1 Approximate likelihood

Solving the model to second order, we obtain the reduced-form system of equations

yot+1 = ky,j + Fx̂t+1 +
1

2

(
Iny ⊗ x̂

′
t+1

)
Ex̂t+1 +Dvt+1, (1)

x̂t+1 = kx,i + Px̂t +
1

2

(
Inx ⊗ x̂

′
t

)
Gx̂t + σ̃Σiwt+1, (2)

st vMS(Q), (3)

1In these derivations, κ = 1.
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where

ky,j = ky,st+1=j ,

kx,i = kx,st=i,

Σi = Σ(st = i).

and Q is the transition probability matrix associated with the Markov switching (MS)
process st.

The vector yot includes all observable variables, and vt+1 and wt+1 are measurement and
structural shocks, respectively. In this representation, as shown in Amisano and Tristani
(2011), the regime switching variables affect the system by changing the intercepts ky,j ,
kx,i and the loadings of the structural innovations Σi (we indicate here with i the value
of the discrete state variables at t and with j the value of the discrete state variables at
t+ 1).

To compute the approximate likelihood, at any point in time we first linearize the two
quadratic terms around the conditional mean of the continuous state variables conditional
on the prevailing regime. As a result, the two equations above can be rewritten as

yot+1 = k̃
(i,j)
y,t+1 + F̃

(i,j)
t+1 x̂t+1 +Dvt+1,

x̂t+1 = k̃
(i)
x,t + P̃

(i)
t x̂t + Σiwt+1,

where

k̃
(i,j)
y,t+1 = k̃y,j +

1

2

(
Iny ⊗ x̂

(i)′

t+1|t

)
Ex̂

(i)
t+1|t −∆i,t+1x̂

(i)
t+1|t,

F̃
(i,j)
t+1 = F + ∆i,t+1x̂

(i)
t+1|t = E(xt+1|yo1:t, st = i, θ),

∆i,t+1 =

∂
(
1
2

(
Iny ⊗ x̂

′
t+1

)
Ex̂t+1

)
∂x̂t+1


x̂t+1=x̂

(i)
t+1|t

,

k̃
(i)
x,t = k̃x,i +

1

2

(
Inx ⊗ x̂

(i)′

t|t

)
Gx̂

(i)
t|t −∆i,tx̂

(i)
t|t ,

P̃
(i)
t = P + ∆i,tx̂

(i)
t|t = E(x̂t|yo1:t, st = i, θ),

∆i,t =

∂
(
1
2

(
Inx ⊗ x̂

′
t

)
Gx̂t

)
∂x̂t


x̂t=x̂

(i)
t|t

for regime-dependent intercepts k̃
(i,j)
y,t+1, k̃

(i)
x,t and slope coefficients F̃

(i,j)
t+1 , P̃

(i)
t .We then

apply Kim’s (1994) approximate filter to forecast

x̂
(i,j)
t+1|t = k̃

(i)
x,t + P̃

(i)
t x̂

(i)
t|t = x̂

(i)
t+1|t,

Q
(i,j)
t+1|t = P̃

(i)
t Q

(i,j)
t|t P̃

(i)′

t + ΣiΣ
′
i = Q

(i)
t+1|t,

and update the vector of continuous state variables

x̂
(j)
t+1|t+1 =

m∑
i=1

x̂
(i,j)
t+1|t+1 × p(st = i|st+1 = j, y

1:t+1
),
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Q
(j)
t+1|t+1 =

m∑
i=1

[(
x̂
(i,j)
t+1|t+1 − x̂

(j)
t+1|t+1

)(
x̂
(i,j)
t+1|t+1 − x̂

(j)
t+1|t+1

)′
+Q

(i,j)
t+1|t+1

]
×

×p(st = i|st+1 = j, y
1:t+1

),

and then update the regime probabilities

p(st+1 = j, st = i|y
1:t

) = pij,t+1|t = pij × p(st = i|y
1:t

),

and

p(st+1 = j, st = i|y
t+1

) = pij,t+1|t ×
p(yt+1|yt, st+1 = j, st = i)

p(yt+1|yt)
,

p(st+1 = j|y
1:t+1

) =

m∑
i=1

p(st+1 = j, st = i|y
1:t+1

),

p(st = i|st+1 = j, y
1:t+1

) =
p(st+1 = j, st = i|y

1:t+1
)

p(st+1 = j|y
1:t+1

)
,

p(yt+1|y1:t) =
m∑
i=1

m∑
j=1

p(yt+1|y1:t, st+1 = j, st = i)× p(st+1 = j, st = i|y
1:t

).

The conditional log-likelihood is obtained as

logL =

T∑
t=1

log p(yt+1|y1:t).

B.2 MCMC simulation

We start by computing the mode of the posterior distribution of the parameters by using
a two step approach:

1. we compute a reasonable approximation to the mode by using a simulated annealing
algorithm (Goffe, Ferrier and Rogers, 1994);

2. using the result from the first step as initial value, we then run a gradient based
method (C. Sims’s csminwell) to find the posterior mode.

Having found the posterior mode, we compute the Hessian of the log posterior distri-
bution at the mode and we use minus the inverse of this matrix as covariance matrix for
a Gaussian distribution in a random walk Metropolis-Hastings algorithm, as customarily
done in Bayesian estimation of DSGE models (as described in An and Schorfheide, 2007).
This covariance matrix is scaled to achieve acceptance rates of 50%.

The MCMC algorithm is run to obtain 300,000 draws, the first 100,000 are discarded
and the remaining ones are thinned (i.e. one every ten draws is recorded), resulting in a
final posterior sample of 20,000 draws, which is then used in all the computations reported
in the paper.

We find that the resulting posterior sample has good properties in terms of acceptance
rate and low correlation across draws.
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B.3 Unconditional moments

To compute first and second order moments, we apply a pruning approach, i.e. we take
into consideration only linear terms for the computation of second order moments, and
linear and quadratic terms for the computation of first order moments. The computation
of unconditional moments works as follows: for each draw of the parameter vector from
the posterior distribution, we compute the state space representation (1), (2) and (3).
From the state space representation we obtain the unconditional covariance matrix of
state vector shocks as

Ωww = σ̃
m∑
i=1

ΣiΣ
′
iπi,

where πi are the ergodic state probabilities associated with the transition probability
matrix Q. Taking the state equation stripped of its second order term, we can obtain
Ωxx,0,the static covariance matrix of x̂t, as solution of

Cov(x̂t) = Ωxx,0 = PΩxx,0P
′
+ Ωww.

Dynamic covariance matrices are obtained by applying the recursion

Cov(x̂t, x̂t−j) = Ωxx,j = PΩxx,j−1, j = 1, 2, 3, ...

and the covariance matrices for the variables in yot are obtained using the corresponding
linear measurement equation:

Ωyy,0 = Cov(yot ) = FΩxx,0F
′
+DD

′
,

Ωyy,j = Cov(yot , y
o
t−j) = FΩxx,jF

′
, j = 1, 2, 3, ...

When computing first moments, we take into consideration both first and second order.
To show how first moments are obtained, we re-write the state space representation in
equivalent form as

yot+1 = ky,j + Fx̂t+1 +
1

2
Evec

(
x̂t+1x̂

′
t+1

)
+Dvt+1, (4)

x̂t+1 = kx,i + Px̂t +
1

2
Gvec

(
x̂tx̂

′
t

)
+ σ̃Σiwt+1, (5)

where E and G are obtained by suitably re-arranging the elements of the matrices E and
G, respectively. Taking the unconditional expected value of the two expressions above
yields the first moments:

µy = E(yot ) = ky + Fµx +
1

2
Evec (Ωxx,0) , ky =

m∑
j=1

ky,jπj ,

µx = E(x̂t) = [Inx − P ]−1[kx +
1

2
Gvec (Ωxx,0)], kx =

m∑
i=1

kx,iπi.

B.4 Impulse response functions

To compute impulse response functions (IRFs) we follow Koop, Pesaran and Potter (1996).
IRFs can be computed with respect to all shocks hitting the model, either continuous (the
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shocks in the state vector wt) or discrete, i.e. the shocks that lead to a change in the
discrete Markov switching process that affects the model. We define εt as the vector
containing all the shocks affecting continuous and discrete states. We compute IRFs to a
shock εjt of size δj occurring at time t,using the following algorithm:

• draw θ(i), i = 1, 2, ...,M, from the posterior distribution of the parameters;

• compute the state space representation corresponding to θ(i), run the Kalman filter

and draw x̂
(i)
t , s

(i)
t from their joint posterior distribution conditional on θ(i);

• draw two histories of shocks ε
(i,1)
t+h ε

(i,2)
t+h , h = 0, 1, 2, ...,H, which are totally identical

but differ only for the shock εjt, such that

ε
(i,2)
jt = ε

(i,1)
jt + δj ;

• feed these two histories of shocks to state and measurement equations starting from

x̂
(i)
t , s

(i)
t , and generate 2 paths

y
(i,1)
t+h , y

(i,2)
t+h , h = 0, 1, 2, ...,H;

the difference between these two path traces the dynamic response of shock δj ;

• the empirical distribution of this difference across draws θ(i) gives the posterior
distribution of the IRFs.

Note that IRFs reported in Figure (7) in the paper are obtained by fixing the state
st+h, h = 0, 1, 2.., H at the value corresponding to low volatility for all the shocks. IRFs
reported in Figure (5) are obtained by contemplating a one-off shift in volatility, i.e. forcing
the process to move to the high volatility state only once at time t.

B.5 Variance decomposition

Forecast Error Variance decomposition (FEVD) is a measure of the importance of the
model’s orthogonal shocks in determining the observed behavior of each variable in the
model at different horizons. The procedure to compute variance decomposition is straight-
forward in linear models and a bit more complicated in non linear ones, such as the
quadratic MS-DSGE model used in our paper. In particular, difficulties arise since:

1. the model is non-linear;

2. there are shocks in the variances, i.e. discrete shocks, beside the usual continuous
shocks;

3. there is uncertainty around the latent states, even conditioning on parameter values.

It is important to notice though, that the non-linearities generated by quadratic terms in
the model’s solution do not play any role if second order moments are computed using an
appropriate pruning procedure, i.e. taking into consideration only linear terms. In order
to describe how the variance decomposition results contained in the paper are computed,
we define
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v(i)(j, h, {S}) = V (yit+h|y1:t, θ
(i)
{S})

the conditional variance of yit+h conditional on the parameter vector θ(i) drawn from the
joint posterior distribution, and {S} denotes the set of shocks or sources of randomness
being allowed to be active in the system from t + 1 to t + H, the end of the projection
period.

As an example, setting S = {0} means that all all shocks in the system (continuous

and discrete) are being switched off, and this is achieving by modifying from θ(i) to θ
(i)
{0}

setting all shocks standard deviations to zero. In this case the conditional variance is
determined only by the conditional variance of all the latent variables (continuous and
discrete) at time t, what is usually referred to as “initial condition”. When we instead
define S to be the full set of shocks, we compute conditional variances using θ(i). These
variances are determined by the full structure of shocks in the model.

In order to describe the portion of forecast variances attributable to each shock, let us
call εkt , k = 1, 2, 3, 4, 5, the continuous shocks in the model, the first three of them having
Markov switching variances.

FEVD coefficients are computed as follows:

• for each value of the parameters θ(i), i = 1, 2, ...,M , drawn from the posterior dis-
tribution, we compute the solution for the model and the theoretical h-step ahead
forecast variances of all observed series. This is done using the appropriate pruning,
i.e. considering only linear terms. These conditional variances, generated when all
shocks are active, enter in the denominator of the FEVD coefficients. This is the
denominator of any FEVD coefficient and it is indicated as

v(i)(j, h, {all}) = V (yit+h|y1:t, θ(i)).

• Starting from θ(i), we set the standard deviations of all shocks (and measurement er-

rors) to zero, and we obtain θ
(i)
{0}. We then compute the associated forecast variances.

This is the portion of variances due to uncertainty around initial conditions:

v(i)(j, h, {0}) = V (yit+h|y1:t, θ
(i)
{0}),

FEV D(i)(j, h, {0}) = 100× v(i)(j, h, {0})
v(i)(j, h, {all})

.

• Starting from θ
(i)
{0}, for each of the continuous shocks with Markov switching variances

(εkt ,k = 1, 2, 3),we first consider the contribution of the shock by setting its two
variances both equal to its low volatility regime value, i.e. σ1,k k = 1, 2, 3 , therefore

obtaining the vector θ
(i)
{0,k}. In this way we introduce only the kth continuous shock,

but we zero out its variance jumps. We indicate the corresponding variance as

v(i)(j, h, {0, k}) = V (yit+h|y1:t, θ
(i)
{0,k})

and we isolate the contribution of that shock by netting out the effect of the initial
condition as follows

v(i)(j, h, {k}) = v(i)(j, h, {0, k})− v(i)(j, h, {k})
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and

FEV D(i)(j, h, {k}) = 100× v(i)(j, h, {k})
v(i)(j, h, {all})

.

• For each of the shocks with switching variances, we define θ
(i)
{0,k,sk} the modification

of θ
(i)
{0,k} where the two variances of shock εkt are set to their respective high and

low values. In this way that is allowed to be heteroskedastic. The corresponding
conditional variances are then

v(i)(j, h, {0, k, sk}) = V (yit+h|y1:t, θ
(i)
{0,k,sk}),

and we isolate the contribution of the kth shock variance jumps by subtracting the
portion of variance jointly due to the initial condition and to the kth shock when
assumed to be homoskedastic:

v(i)(j, h, {sk}) = v(i)(j, h, {0, k, sk})− v(i)(j, h, {0, k});

the FEVD of the kth shock Markov switching jumps is hence computed as follows

FEV D(i)(j, h, {sk}) = 100× v(i)(j, h, {sk})
v(i)(j, h, {all})

.

• For each of the 8 continuous shocks without Markov-switching variance, i.e. the
mark-up shock εµt , the permanent technology shock εξt and the 6 measurement er-

rors (l = 1, 2, ..., 8), we measure the FEVD contribution by defining θ
(i)
{0,l}, i.e. the

parameter vector obtained by modifying θ
(i)
{0} to allow the standard deviation of the

lth shock shock to be equal to the corresponding value of θ(i). We then compute

v(i)(j, h, {0, l}) = V (yit+h|y1:t, θ
(i)
{0,l})

and we isolate the effect of shock l by subtracting the effect of the initial condition
as follows

v(i)(j, h, {l}) = v(i)(j, h, {0, l})− v(i)(j, h, {0})

and the corresponding FEVD coefficients are

FEV D(i)(j, h, {l}) = 100× v(i)(j, h, {l})
v(i)(j, h, {all})

.

• The FEVD coefficients describe above by construction sum to 1 across all sources
of uncertainty for each variable (initial condition, continuous shocks, measurement
errors and variance switches).

• These computations are repeated for all draws from the posterior distribution and
results are averaged across draws. In Table (2) of the paper we report the posterior
means of each FEVD coefficient (one for each variable and for each shock) and the
corresponding 5% and 95% quantiles at different horizons.

17



References

[1] An, S. and F. Schorfheide (2007): ”Bayesian analysis of DSGE models”, Econometric
Reviews, 26, 223-172.

[2] Goffe, W., G. Ferrier and J. Rogers (1994): ”Global optimization of statistical functions
with simulated annealing”, Journal of Econometrics, 60, 65-99.

[3] Koop, G., ,M. Pesaran and S. Potter (1996): ”Impulse response analysis in nonlinear
multivariate models”, Journal of Econometrics, 74, 119-147.

18


